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I. Introduction

T HE autonomous control of relative motion between multiple
spacecraft in orbit is one of the most essential technologies in

near-future space programs. For instance, autonomous rendezvous
and docking was used in resupplying the Mir space station [1] and
has been identified as a key technology in many future space
programs, such as assembly of modular systems in orbit [2], robotic
sample return from planets [3], etc. However, in most space
programs, the rendezvous and docking is currently achieved by
manual operations.

In recent years, a number of research works have been published
which propose relative motion controls in orbits [4–12]. Some of
them are focusing on the spacecraft formation flying problem of
maintaining the relative orbit of a cluster of spacecraft [4–9]. In this
problem, a cluster of spacecraft is supposed to maintain their
formation over the entire life span of the spacecraft, and thus
prediction and control of relative motion is significantly sensitive to
relative orbit modeling errors [9]. Therefore, the effect of minor
perturbations (J2 perturbation, atmospheric, and solar drags, etc.)
and its modeling are one of the main interests in these works, and the
feedback control lawswere generally synthesized in a very long time
scale.

On the other hand, some research works have been published with
a focus on dynamics and controls in the rendezvous and docking
phase. In this problem, the maneuvers are conducted in a relatively
short period (a few orbits) compared to the lifetime, and the distance
between the two spacecraft is relatively small. Therefore, a relative
orbit description expressed in the rotating Hill frame, in which the
effects of minor perturbations other than the gravitational force from
the (pointmass) Earth are ignored, is sufficient to guide the spacecraft
to a successful docking. Kluever [10] proposed a continuous
feedback control law that guides a chaser (or a deputy) to dock with a
target (or a chief) with a desired approaching direction and speed.
However, it used simple Clohessy–Wiltshire equations [13], which
are valid only for a circular orbit and also uses the assumption that the

deputy is on the chief’s orbit plane. More recently, Karlgaard [11]
proposed a continuous feedback controller for rendezvous
navigation in elliptical orbit. In this work, the full equations of
relative motion (see [9]) were converted into full nonlinear equations
in a spherical coordinate system, and then a navigation control law
was derived using the simple feedback linearization method. Singla
et al. [12] also proposed an adaptive output feedback control law
based on full nonlinear equations of relative motion. Their control
law did not use velocity feedback, and thus was less sensitive to the
measurement noise. It was also adaptive to the unknown mass of the
deputy spacecraft.

As far aswe understand, however,most previousworks (including
[10–12]) based on the relative motion equations in the Hill frame
have used purely mathematical approaches in synthesis of their
control laws, and the physical properties of the relative motion have
been overlooked. As Slotine and Li have mentioned in their works
[14,15], some physical properties, such as energy conservation, may
hold significant potential in analysis and control design for multi-
input nonlinear mechanical systems. For example, a multilink
manipulator robot [14,15] and attitude dynamics of a spacecraft
[15,16] have been studied with physical insight. In these works, the
multivariable equations ofmotion are written in the general form of a
second-order differential equation, which is the so-called robot
equation in the robot control context [17]. Expressing dynamics of
systems in this generic form has several advantages. First, the
equation can be easily derived by applying Lagrange’s equation.
Second, there are physical properties which are extremely useful in
designing advanced control schemes. Third, and most importantly,
its form is so general that it can represent various kinds of dynamic
systems, and thus a control technique developed based on this
generic form for one application can be easily applied to other
applications with minimal modifications.

In this Note, the relative motion between two spacecraft is studied
with emphasis on physical insights. The full equations of relative
motion in Keplerian orbits are converted into the general form of a
second-order differential equation, and then feedback control laws
are proposed for different control objectives. Besides the control
laws presented in this Note, other various control design methods,
which have already been developed for other applications (such as
robot manipulator or spacecraft control), can also be easily applied
for the relative motion control, thanks to the use of the generic form.

II. Relative Equations of Motion

Let us consider the relative motion of a active deputy spacecraft to
a passive chief spacecraft in a general Keplerian orbit. The local-
vertical–local-horizontal (LVLH) frame with �x; y; z� axes whose
origin is fixed to the chief spacecraft is used to describe the relative
motion. The�z axis is directed toward the center of the Earth, the�y
axis is directed toward the negative orbit normal, and the�x axis is
defined as i� j � k, where i; j and k are the basis vector of the
LVLH frame. Thus, in a circular orbit, the �x axis is along the
velocity vector of the chief spacecraft. The scalar rc > 0 refers to the

radius of the chief from the gravity center, and r≜
��������������������������
x2 � y2 � z2

p
�

0 refers to the range of the deputy from the chief.
It is assumed that distance between these two spacecraft is small

compared with the chief orbit radius, that is rc � r, and no
disturbances except control forces are acting on these spacecraft.
These assumptions are generally made in the literature on the
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autonomous rendezvous and docking control for a short time period.
Then, the relative equations of motion can be described in LVLH
frame as follows (see [9]):

�x � z _! � 2_z! � x
�
!2 � �

r3c

�
� ax (1a)

�y� �
r3c
y� ay (1b)

�z� z
�
!2 � 2

�

r3c

�
� x _!� 2_x!� az (1c)

where ax, ay, and az are control accelerations of the deputy
spacecraft, ! is the time derivative of the latitude of the chief
spacecraft, and � is the gravitational parameter. The spherical
coordinate version of Eq. (1) is also available in [11,18,19].

Equation (1) is a highly coupled (between x and z axes motions)
multi-input multi-output dynamic equation. Its spherical coordinate
version is even more complicated and fully nonlinear. Many of the
previous works based on Eq. (1) or its spherical coordinate version in
literature used the feedback linearization method which cancels
nonlinear and/or coupling terms. These methods are purely
mathematical and do not exploit any physical properties that the
relative motion dynamics may have.

In the present Note, we rewrite Eq. (1) into the second-order
differential equation in the general form of

H�q� �q� C�q; _q� _q� g�q� � u (2)

where q 2 R3 is the generalized coordinates vector,H 2 R3�3 is the
(symmetric positive definite) inertia matrix, C _q is a nonlinear vector
of Coriolis and centripetal forces, g 2 R3 is the gravity vector, andu
is the control force. The terms in Eq. (2) can be accelerations (instead
of forces) if the equation is properly divided by its inertia.

In Eq. (2), there is a physical property that the matrix _H � 2C is
skew-symmetric, which can be viewed as a matrix expression of
energy conservation,

_q T�u � g� � 1

2

d

dt
	 _qTH _q
 (3)

This property is extremely useful in designing advanced control
schemes [15].

From a fact that the specific kinetic energy per unit mass is
1
2
_qTH _q� 1

2
� _x2 � _y2 � _z2� when q� 	x; y; z
T , we can define the

inertia matrix H as

H�q�≜
1 0 0

0 1 0

0 0 1

2
4

3
5 (4)

In general, the skew symmetry of the matrix _H � 2C can be written

as _H � C� CT [15], and thus C can be decomposed as

Csym � Cskew, where Csym�� 1
2
_H� and Cskew are symmetric and

skew-symmetric matrices, respectively. Therefore, collecting the
terms with _q� 	 _x; _y; _z
T in Eq. (1), one can have the C matrix as

C� Cskew �
0 0 �2!
0 0 0

2! 0 0

2
4

3
5 (5)

since Csym � 1
2
_H � 0 from Eq. (4).

The remaining terms are collected as the term g as follows:

g �
�z _! � x�!2 � �

r3c
�

�

r3c
y

�z�!2 � 2 �

r3c
� � x _!

2
64

3
75 (6)

The vector g can be decomposed into two parts as g� gc � gnc,
where gc is the conservative acceleration and gnc is the
nonconservative acceleration. The conservative acceleration gc can
be defined as a gradient of a virtual potential function U as follows:

g c �rU�
�
@U

@x
;
@U

@y
;
@U

@z

�
T

�
�x�!2 � �

r3c
�

�

r3c
y

�z�!2 � 2 �

r3c
�

2
64

3
75 (7)

where

U≜
1

2

�

r3c
�x2 � y2 � 2z2� � !

2

2
�x2 � z2�

� 1

2

�

r3c
f��e cos f�x2 � y2 � �3� e cos f�z2g (8)

since !2 � ��=r3c��1� e cos f�, where e is the eccentricity of the
chief orbit and f is the chief’s true anomaly. The nonconservative
acceleration gnc is then

g nc � 	�z _!; 0; x _!
T (9)

Finally, the control input u is defined as u≜ a� 	ax; ay; az
T .
Using a similar method, we can also derive a spherical coordinate

version in the form of Eq. (2), and it is presented in the Appendix.
This version is more complicated and fully nonlinear but might be
more compatible to the radar navigation system.

Remark 1: Some of the vectors of the equations of relative motion
in the form of Eq. (2) are not real corresponding force/acceleration
but virtual ones. For instance, the gravitational vector g defined in
Eq. (6) is not necessarily the same as the real gravitational force
exerted by the Earth. They appear due to the use of rotating/
translating Hill frame and the relative position/velocity state
variables.

III. Feedback Controller Design: Case Studies

In this section, we design feedback control laws which control the
relative motion of the deputy spacecraft with respect to the chief
spacecraft in three different scenarios.

A. Case 1: Rendezvous in Circular Orbit

In this case, we revisit a classic problem which designs feedback
control for executing a rendezvous to a chief spacecraft in a circular
orbit. Here, the equations of relative motion reduce to the Clohessy–
Wiltshire equations. In this scenario, the desired reference position is
qd � 	0; 0; 0
T . Since _!� 0 and !2 � �=r3c with a circular orbit, the
nonconservative acceleration gnc becomes zero, and thus g is a pure
conservative acceleration:

g � gc �rU� 	0; !2y;�3!2z
T (10)

where

U� 1
2
!2�y2 � 3z2� (11)

Figure 1a shows the three-dimensional shape of the potential
functionU in the yz frame. As shown in this figure, the potential field
of U has a saddlelike shape, thus the relative motion driven only by
the virtual gravity acceleration g is unstable. The gradient of U is
directed toward the origin along the y axis, but outward along the z
axis. Tomake the relative motion by the gravity force about the chief
spacecraft to be stable, we need to “bend” the potential field
“upward” along the z axis using a control acceleration, so that the
resultant field has a concave shape. From this argument, a feedback
control law is proposed as follows.

Proposition 1: The relative motion in a circular orbit can be
stabilized to the origin by a proportional-derivative (PD) feedback
control law

u ��Kpq� Kd _q (12)
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where Kp � Kp1 � Kp2, Kp1 � diagf	kpx1; kpy1; kpz1
g, kpx1 > 0,
kpy1 � 0, kpz1 � 0, Kp2 � diagf	0; 0; kpz2
g, kpz2 > 3!2, and
Kd > 0.

Proof: Let us define a Lyapunov function V as

V ≜ 1
2
_qTH _q� 1

2
qTKpq�U� 1

2
_qTH _q� 1

2
qTKp1q

� 1
2
kpz2z

2 � 1
2
!2�y2 � 3z2� � 0 (13)

then, from Eq. (3), the time derivative of V can be written as

_V � _qT�u� Kpq� (14)

since _U� _qTrU� _qTg. Under the proposed control law (12), it
follows that

_V �� _qTKd _q � 0 (15)

Then, it can be easily shown that q� 0 is globally asymptotically
stable using the invariant set theorem [20]. □

It is noticeable that the Lyapunov function V is defined as a total
mechanical energy, that is, a sum of the kinetic energy 1

2
_qTH _q and

the potential energy 1
2
qTKpq�U. Also, notice that the control

law (12) has a form of the PD control, whose proportional term is
composed of two terms: �Kp1q and �kpzzk. Whereas the former
term ensures the static stability, the latter term constructs a potential
field, as shown in Fig. 1b. By superposing this (artificial) potential
field with the gravitational potential field U, we can have a concave
potential field, as shown in Fig. 1c, which makes the relative motion
stable. It is noticeable that one can set kpy1 � 0, which can be
interpreted that proportional control in the y-axis direction is not
needed thanks to the gradient ofU toward the origin along the y axis.

The derivative control term �Kd _q has a role of a virtual damper

which dissipates the total mechanical energy, and _V is the power
dissipated by the virtual damper. In fact, one does not need the exact
information of _q, which is usually susceptible tomeasurement noise.
A control law that replaces the derivative control term�Kd _qwithud

where _qTud < 0 will successfully stabilize the relative motion. It is
also noticeable that the proposed control law (12) does not require the
exact value of ! for the chief spacecraft orbit, which is needed in the
previous works for a feedback linearization [10], but only needs the
upper limit of !.

For a case of noncircular orbits, one cannot use such a simple
control law (12), because the potential function U defined in Eq. (8)
varies as the chief spacecraft moves along its orbit, that is,
_U ≠ _qTrU. However, one can still easily design a control law for
this case using the control law presented in the next section.

Remark 2: The use of the potential fields in the analysis/synthesis
in this section (and later) only yields a sufficient condition for the
stability, but does not give any necessary condition. Even if the shape
of the potential field is not concave, it is possible that the relative
motion is stable.

B. Case 2: Constant Relative Position Regulation

The control objective in this case study is to regulate the deputy to
a constant relative position with respect to the chief in a Keplerian
orbit. This goal is requiredwhen the two spacecraft need to keep their
relative position to operate spacemissions or to communicate to each
other.

Proposition 2: The relative motion in a Keplerian orbit can be
regulated to the constant desired position qd by a feedback control
law

u � g�q� � Kp ~q � Kd _q (16)

where ~q� q � qd, Kp > 0, and Kd > 0.
Proof: Define a Lyapunov function

V ≜ 1
2
_qTH�q� _q� 1

2
~qTKd ~q (17)

then, the time derivative of V under the feedback law (16) becomes

_V � _qT��C _q � g� u� C _q� Kp ~q� � � _qTKd _q � 0 (18)
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and so the Lyapunov stability is proven. The global asymptotic
stability can be easily shown using the invariant set theorem
[17,20]. □

Compared to Eq. (12), the proposed control law (16) can be
applied not only for circular orbits but also for general Keplerian
orbits. It can also be applied for a case with qd ≠ 0. At a cost of these
advantages, we cannot enjoy the use of the gravity field U. The
Lyapunov function defined in Eq. (17) does not contain the
gravitational potential function, which means the designed control
law needs to contain the gravitational term g�q� as shown in the
proposed control law (16). This term makes the potential field “flat”
by canceling the (virtual) gravity force (not the real gravity force
exerted by the Earth), and then the proportional error feedback�Kp ~q
forms a concave field centered at the desired positionqd. However, it
is also noticeable that the proposed control law still does not need to
cancel the Coriolis/centrifugal forces which need to be canceled in
conventional feedback linearization methods.

Another remark is that the control law that is needed to keep the
deputy at the constant relative set position qd is u� g�qd�.

C. Case 3: Relative Motion Tracking Control

In this case, we derive a relative motion tracking control law that
makes the deputy track a given reference relative trajectory. The
control law can be used to guide a deputy to perform a docking to the
chief along a given approach direction and relative speed.

There have been proposed many sorts of tracking control schemes
for systems whose dynamic equations can be written in the form of
Eq. (2). Many of them can be considered as special cases of the class
of “computed-torque controllers,” which is, at the same time, a
special application of feedback linearization of nonlinear systems
[17]. A summary of the various computed-torque (and computed-
torque-like) controllers is given in [17] (p. 151). For example, a PD
computed-torque controller can be given as

u �H�q�� �qd � Kd _e � Kpe� � C�q; _q� _q� g�q� (19)

where a preplanned desired trajectory is given in terms of known
bounded functions qd�t�, _qd�t�, and �qd�t�, and the tracking error is

defined as e≜ q � qd. Using this control law, which was originally
developed for robot control, we can easily achieve the relative
motion tracking control.

IV. Numerical Examples

In this section, numerical simulations using the proposed control
laws are presented. The simulationswere conducted, not based on the
equations of relative motion Eq. (1), but on Newton’s law of
universal gravitation between each spacecraft and the point-mass
Earth. For case 1, we assume that the chief spacecraft is in a circular
Earth orbit with an altitude of 340 km, which is the nominal altitude
of the International Space Station. The deputy spacecraft is initially
located at 	1; 1; 1 km
T in the LVLH frame, and the relative velocity
with respect to the LVLH frame is zero. The control gains in Eq. (12)
are Kp � 1 � 104I and Kd � 0:1I. The simple PD control law (12)
shows the convergence of the relative motion to zero, as shown in
Fig. 2.

The second numerical example shows the performance of the
control law (16) for case 2. The chief spacecraft is initially located at
the perigee (which is at an altitude of 340 km) of its elliptical orbit
with the eccentricity e� 0:44. The deputy spacecraft is initially
located at the same relative position with the previous example and
zero relative velocity. The control gains are identical to those of the
previous example, and the desired relative position is qd �
	100; 100; 100 m
T in the LVLH frame. Figure 3 shows that the
control law (16) successfully regulates the relative position of the
deputy to the constant desired position.

In a real rendezvous and dockingmission in space, it is desired that
the deputy spacecraft approach the chief spacecraft along a
prescribed docking axis. The third example shows how the tracking
control law (19) achieves this control objective. The initial states are
the as same as in the second example, and the desired trajectory is

given so that, forfirst hour, the deputymaneuvers toward the docking
axis while keeping the range to the chief constant, and then for next
hour, the deputy approaches the chief along the docking axiswhich is
chosen as�x axis. (A docking in�x axis is commonly referred to as
a “V-bar” docking in the literature.) Fig. 4 shows the resultant
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trajectories of the relative motion expressed in the line-of-sight
spherical coordinate, which is defined in the Appendix. There are
very small transient errors (which would be shown in magnified
plots) during the first few minutes because the deputy’s initial
velocity is different than the desired one, but the deputy immediately
maneuvers as prescribed and successfully docks along�x axis.

V. Conclusions

In thisNote, new expressions of the equations of relativemotion in
general Keplerian orbit are presented, both in a rectangular frame and
a spherical frame. It is shown, by introducing the virtual potential
field, that a simple PD control law without canceling the coupled
terms can perform a rendezvous (without directional constraint) in a
circular orbit. Control laws for relative position regulation and
tracking in Keplerian orbits are also presented. Besides the proposed
control laws, one may use various advanced control laws, such as
adaptive and/or robust controls which have already been developed
for robot manipulators and spacecraft attitude controls, etc. In
addition, control law design using the expression in a spherical
coordinate can also be a potential future study, because the spherical
frame is more compatible with the radar system for spacecraft
navigation.

Appendix: Expression in Spherical Coordinate System

Let us introduce a spherical coordinate vector qs � 	r;  ; �
T
which has a relation that

x� r cos cos �; y� r sin ; z��r cos sin � (A1)

then, the relative motion with the assumption rc � r can be
described as follows (see [18,19]):

�r � r _ 2 � r� _� � !�2cos2 � �
r3c
��r� 3rsin2�cos2 � � ax2

(A2a)

r � � 2_r _ �r� _� � !�2 sin cos 

� �
r3c
��3rsin2� cos sin � � ay2 (A2b)

r� �� � _!� � 2_r� _� � !� � 2r _ � _� � !� tan 

� �
r3c
�3r cos � sin �� � az2

cos 
(A2c)

where ax2, ay2, andaz2 are control accelerations along the basis of the
line-of-sight frame. Using the similarmethod in Sec. II, the equations
of relative motion in a spherical coordinate can be written as follows:

Hs�qs� �qs � Cs�qs; _qs� _qs � gs;c�qs� � gs;nc�qs� � us (A3)

where

Hs�qs�≜
1 0 0

0 r2 0

0 0 r2cos2 

2
4

3
5 (A4)

Cs� _qs;qs�≜
0 �r _ �r _�cos2 � 2r!cos2 
r _ r _r r2 _� sin cos � 2r2! sin cos 

r _�cos2 � 2r!cos2 �r2 _� sin cos � 2r2! sin cos r _rcos2 � r2 _ cos sin 

2
4

3
5 (A5)

gs;c ≜ rUs �

@Us
@r

@Us
@ 

@Us
@�

2
664

3
775

�

�r
�
!2cos2 � �

r3c
�1 � 3sin2�cos2 �

�

r2
�
!2 cos sin � �

r3c
�3sin2� cos sin �

�

�r2 �
r3c
�3 sin � cos �cos2 �

2
6666664

3
7777775

(A6)

g s;nc�qs�≜ 	0; 0; r2 _!cos2 
T (A7)

where the potential functionUs in the spherical coordinate system is
defined as

Us ≜ �
1

2
r2
�
!2cos2 � �

r3c
�1 � 3sin2�cos2 �

�

�� 1

2

�r2

r3c
f�1� e cos f� 3sin2��cos2 � 1g (A8)

and the control input vector us ≜ 	ax2; ray2;�raz2 cos 
T . It can be
easily shown that U�x; y; z� �Us�r;  ; �� for given e and f.
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